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Abstract. The classic equation for decomposing the wavefront aberrations of axis-symmetrical optical systems
has the form,

W ðh0; q;/Þ ¼
X/

j¼0

X/

p¼0

X/

m¼0

C 2jþmð Þ 2pþmð Þmðh0Þ2jþmðqÞ2pþmðcos/Þm

where j, p and m are non-negative integers, q and / are the polar coordinates of the pupil, and h0 is the object
height. However, one non-zero component of the aberrations (i.e., C133h0q3cos3/) is missing from this equation
when the image plane is not the Gaussian image plane. This implies that the equation is a sufficient condition
only, rather than a necessary and sufficient condition, since it cannot guarantee that all of the components of
the aberrations can be found. Accordingly, this paper presents a new method for determining all the compo-
nents of aberrations of any order. The results show that three and six components of the secondary and tertiary
aberrations, respectively, are missing in the existing literature.
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1 Introduction

The wavefront and ray aberrations of axis-symmetrical sys-
tems have attracted significant attention in the literature
[1–12]. The usual equation for decomposing the monochro-
matic wavefront aberrationW(h0, q, /) into different orders
and components is given as (e.g., Eq. (3.31b) of [5]),

W ðh0; q;/Þ ¼
X/

j¼0

X/

p¼0

X/

m¼0

C 2jþmð Þ 2pþmð Þmðh0Þ2jþmðqÞ2pþmðcos/Þm ð1Þ

where j, p and m are non-negative integers, q and / are
the polar coordinates of the pupil, and h0 is the object
height. The sum of the powers of h0 and q gives the order
of the related component. That is,

2q ¼ 2 j þ pþmð Þ ð2Þ
For example, if the piston term is included, the primary
(i.e., fourth-order W4th) aberrations are obtained from
equation (1) with 2q = 4 as,

W 4th ¼ C 400h4
0 þ C 040q

4 þ C 131h0q
3 cos/þ C 222h2

0q
2ðcos/Þ2

þC 220h
2
0q

2 þ C 311h
3
0q cos/ ð3Þ

where the six components of the equation represent the
piston term and the spherical, coma, astigmatism, field
curvature, and distortion aberrations, respectively. The
composition ability of the primary aberrations from equa-
tion (1) is echoed by Buchdahl [1], who computed the
Buchdahl aberration coefficients to determine the wave-
front and ray aberrations of axis-symmetrical systems.
However, the question arises as to whether equation (1)
provides all the components of the various order wave-
front aberrations in an axis-symmetrical optical system.

2 Decomposition of wavefront aberrations

Equation (1) is based on the fact that the aberration
function W(h0, q, /) must satisfy the following three equa-
tions related to the fundamental axis-symmetrical nature of
axis-symmetrical systems (e.g., p. 154 of [5]):

W 0; q;/ð Þ ¼ W 0;�q;/ð Þ ð4Þ

W h0; q;/ð Þ ¼ W h0; q;�/ð Þ ð5Þ
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W h0; q;/ð Þ ¼ W �h0; q; pþ /ð Þ ¼ W �h0; q; p� /ð Þ ð6Þ

Equation (4) indicates that the aberration function of an
on-axis object must be radially symmetric, and hence
implies that the components of W(h0, q, /) that do not
depend on h0 should vary as q2 (or its integer power).
Equation (5) states that W(h0, q, /) must be a function
of cos/. Finally, equation (6) shows that W(h0, q, /) must
equal W(�h0, q, p + /) for an object with height h0 above
the optical axis and W(�h0, q, p � /) for an object with
height h0 below the optical axis. Hence, those terms that
depend on / should be a function of h0qcos/. Combining
this with /-independent terms, it follows that W(h0, q, /)
must consist of terms containing h2

0, q
2 and h0qcos/ factors,

to have a sufficient condition given by equation (1). Note
that a sufficient condition is taken here to mean that any
term generated by equation (1) is a component of an
aberration.

The present group recently proposed a method for
determining the aberrations of axis-symmetrical optical
systems [12]. It is shown in Figure 1 that when the image
plane is not theGaussian image plane, a non-zero component
(i.e., C133h0q

3(cos/)3) is missing from equation (1), even
though it satisfies equations (4)–(6). This implies that
equation (1) alone does not guarantee that all of the compo-
nents of the aberrations can be found. In other words,
equation (1) is not a necessary and sufficient condition for
determining all the components of the aberrations in an
axis-symmetrical optical system.

Thus, a second question arises as to how all of these
components may be found. To address this question, it is

first necessary to realize that the power of cos/ should be
non-negative. That is,

m � 0 ð7Þ
Without any loss of generality, the power of h0 can be con-
fined to a non-negative integer value in order to have
2j + m � 0. That is,

j � �m=2 ð8Þ
Mathematically, the power of q should be greater than or
equal to the power of cos/, i.e., 2p + m � m, which yields,

p � 0 ð9Þ
One then has the following inequality from the sum of
q = j + p + m (see Eq. (2)) and equation (8):

p � q �m=2 ð10Þ
The intersection of equations (9) and (10) defines the possi-
ble range of p. That is,

0 � p � q �m=2 ð11Þ
Equation (11) shows that the integer index p starts at p = 0
and ends at,

pmax ¼ q �m=2h i ð12Þ
where hq � m/2i is the maximum non-negative integer
value of p for a given m and q. In other words, index
p belongs to the following set:

p 2 0; 1; 2; :::; pmaxf g ð13Þ

Fig. 1. The variation of W133 = C133h0q
3/λ (where h0 = 17 mm, q = 21 mm, and λ = 550 μm) versus the separation of image plane

Vimage for the optical system of [12]. The Gaussian image plane of this system is located at Vimage = 92.088474 mm when the object is
placed at P0z = �200 mm. This figure shows that C133h0q

3(cos/)3 has non-zero value when the image plane is not the Gaussian image
plane. It also shows that C133 = 0 when Vimage = 92.088474 mm, indicating C133h0q

3(cos/)3 is the defocus component of primary
aberrations.
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Furthermore, from equation (11), the possible upper limit of
m which yields 0 � q � m/2 is,

m � 2q ð14Þ
The intersection of equations (7) and (14) then shows the
possible domain of integer m for a given q. That is,

0 � m � 2q ð15Þ
Given the preceding derivations, it is possible to obtain all
components of any order (say, the (2q)th order) wavefront
aberration for an axis-symmetrical optical system by the
following equation when j = q � (p + m) is used:

W 2qð Þth�orderðh0; q;/Þ ¼
Xp¼pmax

p¼0

Xm¼2q

m¼0

C 2q�2p�mð Þ 2pþmð Þmðh0Þ2q�2p�mðqÞ2pþmðcos/Þm

ð16Þ
Note that, as shown in equation (4), components of the
aberrations that do not depend on h0 should vary as q2,
or as its integer power only. In other words, if 2q � 2p –

m= 0 andm 6¼ 0, that component generated from equation
(16) does not exist.

Consider Table 1 below, which shows all the compo-
nents of the secondary aberration (q = 3) of an axis-
symmetrical optical system for illustration purposes. The
entries of the first and second columns are the values of
m and p obtained from equations (15) to (13), respectively.
Meanwhile, the entries of the third column denote the

sequence (2j + m, 2p + m, m) = (2q � 2p � m, 2p + m,
m) for each value of m. The fourth column shows the
aberration component for each value of m (if it exists).
Comparing Table 1 with the existing literature, it is found
that three components in Table 1 (i.e., C244h

2
0q

4(cos/)4,
C153h0q

5(cos/)3 and C155h0q
5(cos/)5) are not included

among the secondary aberrations given in the literature
despite satisfying equations (4)–(6). In order to validate
Table 1, the methodology proposed in [12] was extended
to determine the values of all the secondary aberrations
listed in the right-hand column of the table [3]. The results
confirmed that all of the secondary aberrations possessed
non-zero values.

The method in this study was further applied to
determine all the components of the tertiary aberrations
(q= 4) (see Table 2). Comparing the results in Table 2 with
those in Table 3–3 of [5], it is found that six components
(i.e., C173h0q

7(cos/)3, C264h
2
0q

6(cos/)4, C355h
3
0q

5(cos/)5,
C175h0q

7(cos/)5, C266h
2
0q

6(cos/)6 and C177h0q
7(cos/)7) are

missing from equation (1).

Table 1. Components of secondary aberrations with
q = 3 in axis-symmetrical system.

q = 3

m p (2q – 2p – m, 2p + m, m) Aberration
component

0 0 (6, 0, 0) C600h60
1 (4, 2, 0) C420h40q

2

2 (2, 4, 0) C240h20q
4

3 (0, 6, 0) C060q
6

1 0 (5, 1, 1) C511h50qcos/
1 (3, 3, 1) C331h30q

3cos/
2 (1, 5, 1) C151h0q

5cos/
2 0 (4, 2, 2) C422h40q

2(cos/)2

1 (2, 4, 2) C242h20q
4(cos/)2

2 (0, 6, 2) No
3 0 (3, 3, 3) C333h30q

3(cos/)3

1 (1, 5, 3) C153h0q
5(cos/)3

4 0 (2, 4, 4) C244h20q
4(cos/)4

1 (0, 6, 4) No
5 0 (1, 5, 5) C155h0q

5(cos/)5

6 0 (0, 6, 6) No

Table 2. Components of tertiary aberrations with q = 4
in axis-symmetrical system.

q = 4

m p (2q – 2p – m, 2p + m, m) Aberration
component

0 0 (8, 0, 0) C800h80
1 (6, 2, 0) C620h60q

2

2 (4, 4, 0) C440h40q
4

3 (2, 6, 0) C260h20q
6

4 (0, 8, 0) C080q
8

1 0 (7, 1, 1) C711h70qcos/
1 (5, 3, 1) C531h50q

3cos/
2 (3, 5, 1) C351h30q

5cos/
3 (1, 7, 1) C171h0q

7cos/
2 0 (6, 2, 2) C622h60q

2(cos/)2

1 (4, 4, 2) C442h40q
4(cos/)2

2 (2, 6, 2) C262h20q
6(cos/)2

3 (0, 8, 2) No
3 0 (5, 3, 3) C533h50q

3(cos/)3

1 (3, 5, 3) C353h30q
5(cos/)3

2 (1, 7, 3) C173h0q
7(cos/)3

4 0 (4, 4, 4) C444h40q
4(cos/)4

1 (2, 6, 4) C264h20q
6(cos/)4

2 (0, 8, 4) No
5 0 (3, 5, 5) C355h30q

5(cos/)5

1 (1, 7, 5) C175h0q
7(cos/)5

6 0 (2, 6, 6) C266h20q
6(cos/)6

1 (0, 8, 6) No
7 0 (1, 7, 7) C177h0q

7(cos/)7

8 0 (0, 8, 8) No
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3 Conclusions

The wavefront aberrations W(h0, q, /) of axis-symmetrical 
systems are generally decomposed into their various compo-
nents using equation (1). However, the numerical results 
presented in [12] show that this equation cannot guarantee 
that all of the components of the primary aberrations can 
be found. In other words, the equation is a sufficient condi-
tion only, not a necessary and sufficient condition.

Accordingly, this study has presented a method for 
determining the possible domains of the non-negative 
integer indices, m and p, in equation (1) such that all of 
the components of the aberrations can be found. It has been 
shown that the index j computed from equation (2) may be 
negative. Furthermore, three and six new components of the 
secondary and tertiary aberrations of an axis-symmetrical 
system have been found, where these components all satisfy 
the equations describing the fundamental axis-symmetrical 
nature of axis-symmetrical systems. Overall, the method 
proposed in this study provides a systematic and robust 
approach for ensuring that all of the components of any 
order wavefront aberration in an axis-symmetrical system 
can be found.
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